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Three-wave gap solitons in waveguides with quadratic nonlinearity

William C. K. Mak,** Boris A. Malomed® and P. L. Chi*
IOptical Communications Group, School of Electrical Engineering, University of New South Wales, Kensington,
New South Wales 2052, Australia
2Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
(Received 3 April 1998; revised manuscript received 6 July 1998

A model of the second-harmonic-generating®) optical medium with a Bragg grating is considered. Two
components of the fundamental harmoriieH) are assumed to be resonantly coupled through the Bragg
reflection, while the second harmor8H) propagates parallel to the grating, hence its disper@ifraction)
must be explicitly taken into consideration. It is demonstrated that the system can easily generate stable
three-wave gap solitons of two different typ@eee-tail and tail-locked oneg that are identified analytically
according to the structure of their tails. The stationary fundamental solitons are sought for analytically, by
means of the variational approximation, and numerically. The results produced by the two approaches are in
fairly reasonable agreement. The existence boundaries of the soliton are found in an exact form. The stability
of the solitons is determined by direct partial differential equation simulations. A threshold value of an
effective FH-SH mismatch parameter is found, the soliton being stable above the threshold and unstable below
it. The stability threshold strongly depends on the soliton’s wave-numberkshifid very weakly on the SH
diffraction coefficient. Stationary two-soliton bound states are found, too, and it is demonstrated numerically
that they are stable if the mismatch exceeds another threshold, which is close to that for the fundamental
soliton. Atk<0, the stability thresholds do not exist, a the fundamental and two-solitons are stable. With
the increase of the mismatch, the two-solitons disappear, developing a singularity at another, very high,
threshold. The existence of the stable two-solitons is a drastic difference of the present model from the earlier
investigatedy(® systems. It is argued that both the fundamental solitons and two-solitons can be experimen-
tally observed in currently available optical materials with the quadratic nonlinearity.
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[. INTRODUCTION Theoretical studies of the 3WRI in the presence of the
diffraction or dispersion have commenced recefy7]. In
The idea of using the large nonlinear phase shift generf6] particular exact soliton solutions were found; [il] a
ated by cascaded quadratic effects in the second-harmonigeneral two-parameter family of solitons was constructed by
generation(SHG) systems to balance dispersion or diffrac- means of both the variational approximatid/ ) and direct
tion so as to produce localized solitary wav@s simply  numerical methods and domains of stable and unstable soli-
solitons, in a mathematically nonrigorous sena@s pro- tons were identified. Further results concerning the stability
posed long agdl] A soliton due to a nonlinear parametric of the solitons supported by the 3WRI can be founddi®].
interaction of a more general type, viz., the three-wave resotn [9] it was pointed out that the 3WRI may give rise to a
nant interactionN3WRI), is also possible in the presence of multistability of the soliton solutions in a limited range of
the quadratic nonlinearity. It differs from the simplest two- parameters.
wave interaction in that there are two physically different In the present work the aim is to study three-waysp
fundamental-harmoni¢FH) components, corresponding to solitons in x® media equipped with a resonant grating,
different polarizations. The two orthogonally polarized FH which gives rise to a strong effective dispersion or diffrac-
waves generate a single second-harmd8id) field through  tion (the grating is resonant if its spacing is commensurable
the so-called type-Il phase matchif@], the SH field being with the wavelength, leading to the resonant Bragg reflection
down-converted to both components of the FH field. In situ-of light). This advantage offered by the grating is very im-
ations where the dispersion and diffraction can be neglecteghortant because, having a strong dispersion/diffraction, it is
a number of investigations have been carried out on thisnuch easier to achieve the FH-SH phase matching, which is
topic [3]. Note that the 3WRI model with group-velocity the fundamental condition necessary for the use ofytffe
differences between the waves ithoutdiffraction or dis-  nonlinearity. Theoretical results for the four-wave gap soli-
persion is exactly integrable by means of the inverse scattetens in the temporal domain, supported by SHG in combina-
ing transform[4] (moreover, this model is integrable, too, in tion with the Bragg gratings, can be found [ib0]. In the
the multidimensional cage present work we consider a waveguiding structure that car-
ries the grating in the form of a system of parallel scores
along the propagation directian, which will give rise to

*Electronic address: w.mak@alpha400.ee.unsw.edu.au three-wavespatial solitons: The grating will couple two FH
"Electronic address: malomed@eng.tau.ac.il wavesE, , to each other through the resonant Bragg scatter-
*Electronic address: p.chu@unsw.edu.au ing and to the SH wavE; through the nonlinearity. The two
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X in our model can be stable is quite nontrivial as, in the usual
x®» models, all the higher-order solitons are subject to an
instability [16,17).

The rest of the paper is organized as follows. In Sec. Il a
detailed formulation of the model is given. In Sec. Il we
consider the linearized version of the model, with the aim to
investigate a possible structure of the soliton’s tails. Though
the analysis of the linearized system is very simple, it yields
fairly useful information about a parametric region in which
the solitons may exist and allows us to identify two different
possible types of the solitons, which we céte-tail and

FIG. 1. Configuration of the wave vectdks, k;, andks of the  tail-locked solitons. Actually, the tails of the solitons of the
two components of the fundamental harmonic and of the seconghtter type cannot be described by the fully linearized system;
harmonic. The scores that form the spatial grating are parallel to thihstead, the relevant systemsemilinear in which only the
z axis. FH equation is linearized. In Sec. IV we briefly describe

FH waves are chosen so that their carrier wave vectors hay@'alytical and numerical techniques to be used for the study
equal lengths, making opposite angles with thexis (i.e. of both the stationary shape of the solitons and their stability

with the scores that form the gratingwhile the SH wave in the full nonlinear system. The analytical approach is based

vector is parallel taZ (Fig. 1). The mathematical model of on the VA, its peculiarity being that one should devise a

this system includes transverse-walkoff terms in the equa'[_ractable ansatz for the complex FH soliton’s component. In

tions for the two FH components, whose effect is definitely>cC: V the results concerning the existence and stability of
much stronger than that of the intrinsic diffraction. That is the fundamental solitons are displayed and in Sec. VI similar

why the diffraction terms may be dropped in the FH equa_results are displayed for the two-solitons. The results ob-

tions [7]. However, the diffraction must be kept in the SH tained in the work are summarized in Sec. VII.
equation(along with the phase-mismatch ternas this har-

z

monic does not interact with the grating parallel to its wave Il. MODEL
vector.
A similar model was a starting point in the wolrk1], but We consider the resonant nonlinear interaction of two FH

a crucial difference is that a very large phase mismatch bevaves with identical frequencies and Z components of
tween the SH and FHs was assumed to allow one to elimitheir carrier wave vectork; andk,. The x*) nonlinearity
nate the SH component, transforming the system into thgenerates the third wave with wave numbarat the fre-
massive Thirring modelMTM) [12], which is exactly inte- quency 2. The case of interest idk<ks, whereAk=k;
grab]e by means of the inverse Scattering transfbrﬁj [an + k2_ k3 is the wave-vector mismatch. We assume that the
optical fiber with the Bragg grating araibic (Kerr) nonlin-  FH wave vectors make small angles with the Z direction
earity is described by a well-known nonintegrable generaliand have the same length, so that=k,=k; see Fig. 1.
zation of the MTM[14]]. Since all the soliton solutions of Assuming the amplitudeg,, E,, andE; of the interacting
the integrable MTM are stable, the solitons considered irharmonics to be slowly varying in comparison to the carrier
[11] are also always stable. In the present work we do nowaves and employing known asymptotic techniq(izg],
assume that the phase mismatch is especially large and keepe can derive the following system of the amplitude equa-
the SH component in the model explicitly. Obviously, the tions:
case of a smaller mismatch is more physically interesting.
We will demonstrate that stable three-wave soliton solutions _J9E, . 9E; _
do exist at a large mismatch and they continue to exist as the ZIKE + 2|kpﬁ+)\E2+XE3E§ e '8k4=0,
phase mismatch is decreased. However, we fititteshold
value of the mismatch, below which the soliton solutions
lose their stability(though they do not disappgaAn insta-
bility threshold in terms of the mismatch parameter is also
known for the usuak(® solitons[7,8,15; however, the prin-
cipal difference is that the usual solitons atablein the 5
fully matched case, while our solitons may be both stable 2ik 07_E3+ ‘9_ES+}E E.eldkZ_q
and unstable in this case, depending on other paramhers 92 gx2 =2 '
wave-number shift and an effective SH diffraction param-
eten, i.e., the location of the instability threshold is different ~
in the present model. We also investigated the effect O)Nhere ) )(52(4(727)w2lkcz)x(2)(w;2%_w) anq Y
changing the SH diffractioridispersion coefficient, finding = (8@ /ksC*)x*¥(2w;w,»), \ being the coupling con-
that it has less effect on the threshold than the wave numbéft@nt induced by the Bragg scattering. We can then rescale
shift and the wave-vector mismatch. Eq. (1) by setting Elz)\vllx/x—, EZE)\UZ/\/X—, Es
Finally, we will consider two-soliton bound-state solu- =(\/x)vsexp{AkZ),Z=2kz\, and X=2pkx/\. Addition-
tions (or simply two-solitony, finding that they have their ally, using the fact thak;/k~2 and defining the effective
own stability thresholdwhich is higher than but close to the mismatch q=4kAk/\x and the diffraction parameteD
one for the fundamental solitonsThe fact that two-solitons =\/4p?k?, we arrive at the system in the normalized form

JE JE _
2ika—zz—2ikpa—xz+)\El+XE3E1‘ e idkZ=0 (1)
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vy . duy . othe'rwise the quadratic term in E@lb) is dominating over
= Tl Tvatovawy =0, the linear ones dtx|—.

Thus we arrive at the conclusion that tqe solitons may
be of two different types, within the framework of the same

i @ —i @ +v,tvgvt =0, 2) model. In the regiori7), supplemented by the necessary con-
dz X dition |k| <1, the tails of both the FH and SH components of
the soliton are governed by the decoupled linearized equa-
dva 9%v5 tions and have the form given by Eq%) and(6), in which

ZiE—qvg-FD +v,0,=0.

case the solitons can be naturally calfezk-tail ones. How-
ever, in the opposite case, the equation for the SH compo-
Using obvious symmetry properties of the systén we  NeNtLEd.(4b)] cannotbe linearized, hence the soliton’s tails
can confine ourselves to the caBe>0 without the loss of ~&ré determined, in this case, bysemilinearsystem

NG

generality. o "
We are interested in stationary solutions to Egs.in the —kutiu’—u*=0, —(4k+q)us+Duz=|ul’>. (8
form v;=e*u (x), v,=e*u,(x), and vy=e?*uy(x),

wherek is a common wave-number shift of the harmonics.A g(_aneral solution to Eq¥8) describing the soliton’s tails is
Thus we obtain from Eqg2) a system obvious[cf. Egs.(5) and(6)]: If k<O,

—kuy+iug+u,+usul =0,

u=A ex;{% sin"1(V1—k?) |exp(— V1—K?x|), (9

—ku,—iujs+uy,+ugui =0, ©))

— (4k+q)uz+Duj+u,u,=0, U3:A2[4D(1—k2)—(4k+q)]_1exp(—2\/1—k2|x|)(,10)
the prime standing fod/dx. We can impose a natural reduc-
tion u;=—u%=u on the amplitudesi; and u,, which is
compatible with Eqs(2). Substituting this into Eqg3), we
finally obtain the equations for the complex functiafix)
and realus(x),

A being an arbitrary real constant and, in the cksed,u
—iu*. Of course, the solutiof®) for the FH tail is exactly

the same as in the case of the free-tail soliton; however, the
solution(10) for the SH tail is very different, being locked to
the FH tail, so that the solitons of this type may be catkatl

—Ku+iu’—usu—u*=0 (43 locked Note that the boundary between the free-tail and tail-
’ locked solitonsg=qy(k) [see Eq.(7)] may also be defined
— (4k+q)uz+Duj—|ul2=0 (4b) as the point of thexact matchingbetween FH and SH, fol-

lowing the analogy with the usual® models.

This is the simplest version of the model to produce the
three-wave solitons in thg(®> media. IV. ANALYTICAL AND NUMERICAL TECHNIQUES FOR
THE ANALYSIS OF THE NONLINEAR SYSTEM

lll. LINEARIZED AND SEMILINEARIZED SYSTEMS To find soliton solutions to the full nonlinear equations

First of all, it is useful to analyze the linearized version of (4), analytical and numerical methods were employed. An
the system(4). Obviously, the linearized equations get de-analytical one is based on the VA and then the numerical

coupled. Looking for a solution to them in the form finite-difference method uses the approximate solutions fur-
nished by the VA as the first guess. Such a two-step ap-
u~exp(— ulx|), uz~exp—puslX|), (5)  proach has proved to be very efficient in a number of other

problems, e.g., searching for solitons in the model of tunnel-
corresponding to an exponentially decaying tail of the soli-coupled parallely®) waveguideq19]. However, there is a

ton, it is straightforward to find different technical feature in the present problem: Thus far
the VA was usually applied to find real solutions, while here
w?=1-k%, u2=D (4k+q). (6)  we are seeking essentiallpmplexones(an exception is the

work in [20], in which the VA was elaborated for solitons in
A necessary condition for the existence of the solitom?s the generalized MTM introduced iii4] to describe an op-
>0, i.e., according to Eq6), |k|<1. This restriction on the tical fiber with the Bragg grating and cubic nonlineayity
allowed values of the propagation constant implies that wéThis difference is not simply formal: The necessity to ac-
are dealing withgap solitons which is typical for all the commodate a complex wave form makes a corresponding
model involving the Bragg scatterind4]. Another neces- ansatz(the trial soliton’s form much more involved and in
sary condition 4+q>0 is imposed by demanding5>0  many cases a straightforward extension of the usual VA
(recall that we set, by definitior)>0). However, the ex- leads to messy equations of no practical value. However,
pression(6) for Mg makes sense only ifi;<2u or, in an  below we will develop an analytical approximation that will
explicit form, produce very reasonable results for the present model.

To apply the VA we need the Lagrangian for Eq4),
q=<qo(k)=4D(1—k?) —4k; (7)  L=[*ZL dx, with the density
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FIG. 2. Typical example of the comparison between the numegstdid curve$ and variationadashed curvesfundamental-soliton
solutions for the realy;) and imaginary ;) parts of the fundamental-harmonic component and the real second-harmonic comphent (
The values of the parameters &e 0.3,D=0.5, andg=60.

1 , - 2 )
£=—k|u|2—§(q+4k)u3+ E[u’u*—(u*)'u] —u 2 —2(1+k)A2+5(1—k)52+(q—4k)A3
1 1 T T 1
—ED(ué)2—|u|2u3— z[u2+(u*)2]. (11 —EA2A3— §A3B2 —§DA§=0.

Then we adopt the following complex ansatz for the solu-This set of algebraic equations was solved numerically.

tions sought: Other details of the procedure are straightforward. After this,
the stationary-soliton solutions to Eq4) were obtained by
means of a direct finite-difference numerical sche@g].

(12 The results produced by these methods are displayed and
commented upon below.

u=A seclfux)+iB sinh ux)sech(ux),
Uz=Aszsechux),

where the soliton’s amplitudes, A;, andB and the inverse
width w are free parameters to be found by means of the VA. V. STATIONARY FUNDAMENTAL-SOLITON
Insertion of Egs(12) into Eqg.(11) and integration generate SOLUTIONS: EXISTENCE AND STABILITY
an effective Lagrangian L We then follow the variational
formalism to derive the VA equationglL/dA=0,dL/JB
=0,dL/dA3=0, and JL/du=0. The resulting algebraic
equations are

A comparison of the stationary fundamental-soliton solu-
tions obtained, in a typical case, by means of the analytical
and numerical methods is presented in Fig@2relatively
large value of the normalized mismatais= 60, is selected

4 for this figure; however, this corresponds to a point just
4~ Y1+ KA+ §B+ mu TAA;=0, within the region of stable fundamental solitons; see Fig. 4

below). It is seen that the agreement is acceptable, especially

4 4 - in view of the fairly simple form _of the anga(th)_.
—u Y (1-K)B-=A— —u 1AsB=0, In Fig. 3 we present a numerically obtaintuily of the
3 3 4 fundamental-soliton solutions to Eq#&l), in the form of
three-dimensional plots showing the dependence of the basic
characteristics of the fundamental soliton, viz., the ampli-
tudes of its two components and u; and width of theu
(13)  component vs the mismatechand wave-number shik, the

2 T -
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FIG. 3. Family of fundamental-soliton solutions) The FH @) amplitude,(b) the SH (3) amplitude, andc) the FH width are plotted
vs the wave-number shit and phase mismatol), while the SH diffraction parameter is fixed Bt=0.5. The plot for the SH width is
similar to (c). The line consisting of crosses shows the existence boundarg4 0 for the tail-free solitons.

diffraction coefficientD being fixed at a realistic value 0.5. is that the amplitudes of the soliton’s components increase,
The width of theuz; component is not displayed, as it turns whereas their widths decrease, with the increasg andk.
out to be quite close tdmore accurately, slightly smaller Another clearly seen and quite natural feature is that the FH
than the u component’s width[note that the ansat¢l?2) and SH amplitudes are on the same order of magnitude at
adopted above as the basis of the VA assumed both compemall values of the mismatch, while at largeq the FH
nents to have identically equal widihsHere the standard amplitude is much larger. In Figs.(@ and 3b) we also
definition of the full width at half maximum is applied to the indicate the soliton existence limit as implied by E@), i.e.,
absolute values of the complex fields and the amplitudegk+ q>0 (shown by the crosses on the base plalie€an be
refer to their peak values. A general trend seen in these ploteen that the trend of decreasing amplitudes and increasing
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FIG. 3 (Continued.

widths accelerates rapidly as this soliton existence limit idifference numerical solution was used as the initial configu-
approached. A similar trend is observed as another existengation for the BPM simulations, with an additional perturba-
limit k=—1 is approached, although no curves beydnd tion generated by increasing the amplitude of the wave
=—0.5 were drawn because in this region the numericatomponents by 1%. In most cases, the simulations were run
scheme converges too slowly, which makes it difficult toover the propagation distanee- 2 [in the notation of Egs.
accumulate enough data for drawing the continuous curvesp)], which was quite sufficient to discern between the stable
However, anoppositetrend is seen as yet another soliton ang unstable solitons; however, in some cases, the simula-
existence limitk=1 is approached: The amplitudes and tons were run twice as long for stable solitons in order to
widths keep on increasing and decreasing, respectivelyiher check the stability. No change has been observed in
which is quite surprising because from ) one would 6 |onger simulations as compared to those it 7.

expect that the width should diverge at both limits + 1. It has been found that when the mismatghis large

This unexpected trend does not reverse up to the vilue enough, the solitons are stalfle agreement with the results

=0.99. Atk=1, the amplitude remains finite; however, the . . 2
soliton becomes delocalized with a small finite-amplitude CWreported in[11). The solitons existing a=>0 become un-

oscillatory tail.(Such delocalized soliton solutions were pre- St2ble 8] decreases pasttareshold value & [which de-
viously discussed in detail if22].) This in turn is in accord P€nds on the wave-number stiifand slightly on the diffrac-
with Eq. (6), which can also be alternatively interpreted astion coefficientD (see below the superscripE refers to the
that the exponentially decaying soliton tail is changed to a{un'damen.tal solitons, as another stability th_rt_ashold for two-
nonvanishing oscillatory cw. No solutions can be numeri_SOH'[OFnS_Wl” be found below For smaller positive values of
cally found fork>1. However, since a delocalized soliton is K: qif is smaller too and fok<0 the threshold does not
not rea”y a soliton and also, as it is shown below, in theeXiSt: In this Casea” the solitons turn out to be stable in
same limit the solitons become strongly unstable, the investhe simulationgsee more details belgwOn the other hand,
tigation was not carried out further beyohkd-1. It is rel-  Whenk gets close to its limit value isee abovg qff) be-
evant to stress that the parametric domain in which the threegcomes very largéi.e., the stability is lost in the limik— 1
wave gap solitons may exist in the present model appears when the soliton demonstrates the unexpected behavior de-
be completely filled by the soliton solutions. This is a drasticscribed above The simulations also demonstrate that the
difference from the four-wave model of thé® gap solitons  instability of the solitons withg slightly belowq(;) evolves
[7], in which large “voids” were found inside the formally by developing an asymmetry between the two FH compo-
available existence domain. nents: For instancay; grows while u, diminishes or vice
Proceeding to the stability of the fundamental solitons,versa. Thus the instability breaks the reduction that leads
one sees that it would be really difficult to investigate it from Egs.(3) to Egs.(4). The asymmetry is enhanced as the
analytically (in particular, the VA is much less convenient waves propagate. For still smaller valuesmfthe soliton
for this than to search for the shape of stationary soljtons breaks up or develops large distortion very rapidly.
Therefore, the stability was tested by direct simulations of In Fig. 4 we summarize the results found numerically for
Egs. (2), using the beam propagation meth(BPM). The the stability of the fundamental solitons in the form of their
stationary shape of the solitons produced by the finitestability and instability domains on thek,q) (with k>0)
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FIG. 4. Numerically found stability domains for the fundamental solitdason the @,k) plane atD =0.5 and(b) on the @,D) plane
atk=0.1.

and D,q) parametric planesthe presentation of these re- It is interesting that not all the solitons with the exactly
sults in the form of one three-dimensional plot is undesirablenatched harmonicgcorresponding to the tail curyeare
because it does not seem cledtvidently, the borders be- stable. This situation is drastically different from that known
tween the domains simultaneously display the dependencésr the usualy(® solitons, which are always stable at the
a{) (k) andq{)(D), respectively, With regard to the great exact-match poinf7,8,19. Also, in the usualy‘®) models,
difference in the vertical scales between Fig®) 4nd 4b),  all the tail-locked solitongcorresponding to positive mis-
it can be inferred that the diffraction parameler unlike the  match and a part of the free-tail ondghat correspond to
wave-number shifk, has a little effect org,) . negative mismatghare simultaneously stable. This is differ-
Additional information is given by Fig. 5, where we have ent from what is depicted here: Only part of both the tail-
redrawn the stability and instability domaihe boundary locked and the free-tail solitons are stable.
between them is labeled as the “stability” curve consisting
of circles on the k,q) parametric plane with a different
scale, so that the soliton existence limk-4g=0 (shown by
crosses and labeled as the “existence” cunand the The parametric space of Eqd) was numerically scanned
boundaryq=qg(k) [see Eq.(7)] between the free-tail and to search for other possible stationary solutions and a family
tail-locked solitongthe solid line labeled “tail’) can all be  of two-soliton bound states was found. A shape of a typical
plotted too,k<<0 being also included. The other two-soliton two-soliton solution is shown in Fig. 6. To describe the
existence limitk= + 1 form the left and right boundaries of whole family of the two-soliton solutions, in Fig. 7 we plot
the figure. In this figureD is fixed at 0.5. Solitons exist the FH and SH amplitudes, together with the SH width of the
above the existence boundary are stable to the left of thidividual bound pulses, vg and D, fixing k=0.1. Note
stability boundary and are of the tail-locked type above thehat the two individual pulses in the bound state always have
tail boundary. Note that the free-tail solitons exist only in aequal peak values.
narrow stripe. It can be deduced from E@) that, asD It can be seen that the basic features of the two-soliton
decreases, the curvature of the tail curve redybes with  solutions are similar to those of the fundamental-soliton
the end points ak= =1 fixed and thus the free-tail soliton ones. The amplitudes of the FH and the SH components
existence region will further shrink, tending to nothing asincrease while the widths decrease, with the increasg. of
D—0. The effect of changind is much smaller. As can be ex-
The stability and existence curves intersect in Fig. 5 apected, the SH amplitude and width decrease and increase,
(k,q)=(0.08-0.3); thusall the solitons ak<<0 arestable = accordingly, with the increase @f, while the FH amplitude
which was verified in many runs of the numerical simula-and width are only slightly affected by changifig. The
tions. It is also noteworthy that, at the negative mismagfch soliton existence limit +qg=0 is also included in Figs.
<0 there is only a tiny stability domain, ktvery close to 0. 7(a) and 1b), showing the trend of the solitons to disappear

VI. TWO-SOLITON STATES
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FIG. 7. Family of the two-soliton solutionga) the amplitude of the FHW) field, (b) the amplitude of the SHUz) field, and(c) the SH
width of the individual bound pulse inside the two-soliton plotted vs the phase mismatol the SH diffraction parametér at a fixed

wave-number shifk=0.1. The inset ifa) shows an extended plot of the FH amplitudegvat D= 1. The line consisting of crosses shows
the existence boundaryk4-q=0 for the free-tail solitons.

by getting infinitely broad and having vanishing amplitudesinspires one to search for the two-solitons existence limit for
in this limit. The curves were not traced up to the limit be- large g and the way they disappear when approaching the
cause of the slow convergence of the numerical scheméimit. In the inset of Fig. 7a) we show the dependence of the
however, there is no doubt that this trend persists. FH amplitudes vg for k=0.1 andD = 1, with g extended to

In the limit g— o0, when the SH field can be eliminated to larger values. It can be seen that the amplitude keeps on
cast the model into the MTM forfil1], the two-solitongdo  increasing and the increase accelerates whep~#0. The
not exist because MTM does not have such solutions. Thisvidths of the wavegnot plotted herpare decreasing accord-
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FIG. 7 (Continued.

ingly. Thus the trend for the two-solitons is to become tallertwo-soliton was found in simulations of the four-way&
and narrower asq increases. Atq>20, the numerical gap-soliton model combining SHG and the Bragg scattering,
scheme has failed because of an instability caused in it by thigut completely ignoring the diffractiotdispersion [7]. We
large change of the derivatives at the sharp peaks of thRave performed systematic BPM simulations of perturbed
pulse. Although an exact existence limit of the two-solitonstyo-solitons in order to test their stability in the present
was not reached at largg we conjecture that they disappear model(it is virtually impossible to study the stability analyti-
through a collapselike mechanism, similarly to what is wellcaly, first of all, because the stationary two-soliton is not
known in the multidimensionat‘®) models. known in an analytical form As in the case of the funda-
A specific characteristic of the two-soliton is the depen-menta| solitons, the initial perturbation added to the station-
dence of the separatiof between the individual bound gy tyo-solitons was generated by an increase of the ampli-
pulses on the model's parameters. The simulations demoR; yos of the two constituent pulses by 1% and the

strate that the separation is nearly immune to the changes Q ; : . .
: ulations were then typically run over the propagation dis-
the parameters over most of the range considered, except tqa?“ ypicaly propag

! A . : ahce ofz= 2, which was sufficient to conclude if the two-
S slightly decreases with increasiggand increases at those .
. AR _ soliton was stable or not. In many cases when the two-
existence limitk= —1 and &+ q=0 where the fundamen-

tal solitons broaden indefinitely. It seems that, near theséOIItons seemed stable, the runs were made twice as long in

limits, the individual pulses repel each other more stronglyOrder to control the accuracy .Of the_r.esults, which, however,
as they spread out. A separate plot of the dependsvsed  NeVver revealed an additional instability. _
is shown in Fig. 8 fog=10 andk=0.1. It demonstrates an The stab!llty was flrst_tested for fixdd=0.1, whﬂe_q and
interesting feature that, beyoil~1.1, the separation of the D were varied. In addition to the fundamental so_llt_ons, the
pulses rapidly increases with. This probably indicates a two-solitons are always found to kstableat a sufficiently
two-solitons existence limit at largd. large phase mismatch, getting destabilized when de-
The effect of the wave-number shifton the characteris- creases past a specific two-soliton threshold vajife. As
tics of the bound-state solutions was also investigated. Withan illustration, in Figs. @) and 9b) we show a typical ex-
out displaying detailed results, it is sufficient to note theample of the evolution of slightly perturbed stable and un-
characteristics of the two-solitons vary withsimilarly to  stable two-solitons, corresponding ¢ptaken, respectively,
those of the fundamental solitofsee Fig. 3 With increas- above(at q=6) and beneatlfat q=1) the threshold. Only
ing k, the amplitudes increase and the widths decrease. Athe FH components are shown in Fig.i9, being displayed
the existence limitk=—1 and &«+q=0 are approached, in the regionx<0 and, simultaneously,, atx>0. This way
the solitons broaden and amplitudes vanish. of presenting the numerical results was adopted for conve-
The stability of the two-solitons is a crucially important nience; in reality, of course, both components occupy the
issue, as similar bound states are also known in the usughme space in the medium. It can be seen that the stable
(two-wave x® model, but they ar@lways unstabld16].  two-solitons in Fig. 8) maintains its shape and amplitudes,
On the other hand, a numerically stable object similar to avhile the two-soliton in Fig. &) clearly develops an insta-
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FIG. 8. Separation between the bound pulses inside the two-soliton vs the diffraction pafanatter 0.1 andq=10.

bility, developing an asymmetry betwean and v, (v, >0.1 since the numerical scheme fails to find any stationary
grows andv, diminishes. two-solution forg>20, as mentioned above in the discus-
The stability threshold){? is found to be higher than that sion related to the inset in Fig(&. Furthermore, if the two

for the fundamental solitons, although the two thresholds arehresholdsg{?) andqy,) are always close, Fig. 5 can be ap-

actually close. The numerically determined stability domainpjied, approximately, to the two-solitons too. Recall that Fig.
for the two-solitons was plotted on the,0) plane in Fig. 5 tells us that all the solitons are stablekat 0, which ex-
10. As D increases, the thresholyf?) decreases, although actly complies with the numerical finding that all the two-
the effect of changind is actually very weaknote at the gglitons are also stable k< 0.
vertical scale of Fig. 10 Also, the border between the stable  The |ast issue to be addressed is the asymmetry between
and unstable domains @btainedto be practically straight, {he two FH components, which spontaneously develops as
within our accuracy. It can be seen tigff) decreases to- the solitons propagate. Although it cannot be seen in Fig.
wards the threshold valuqﬁr'fr) for the fundamental soliton 9(a), all the stable solitonspoth fundamental and two-
[see Fig. 4b)], which is quite natural: As it follows from Fig. solitons, are found to acquire a nonzero, although small,
8, the two pulses in the two-soliton state separat®as-  asymmetry. Because the stability of the two-solitons is a cru-
creases, hence the two-soliton stability essentially amountga|ly important issue, more simulation runs with an exces-
to the stability of the individual pulses, although the reasonsjvely long propagation distan@e= 107 were carried out to
why qff) decreases with increasing, in the range of small  see if the asymmetry will keep growing at the parameters
D, where the separation between the two individual pulses igajyes inside the stability domain. A typical example of the
quite insensitive td, is unknown. . _ evolution of the asymmetry, foD=0.5,k=0.1, andq

For values ofk other than 0.1, the stability was also in- =10, is shown in Fig. 11. The asymmetry is quantified by
vestigated. Fok>0.1, all the two-solitons were found to be he ratio of the peak values of andv,. It can be seen that
unstable, while fork<0, they all are stable, so that a the ratio approaches a constant value, slightly different from
stability-threshold curve on theg(k) plane, similar to that 1 after propagating over a very long distance. A natural
drawn in Fig. 4a) for the fundamental solitons, cannot, as assymption that explains this numerical observation is that
matter of fact, be obtained for the two-solitons. However, ang underlying equation®) have a general family cdisym-
dependence of the two-solitons stability threshold on thenetric stationary fundamental-soliton and two-soliton solu-
wave-number shifi can be understood by the following tions, the solution subject to the above symmetry reduction
argument. Fok=0.1, it has been found that the threshold u,;=—u} being only a particular one. Then a small pertur-
qi@! is close to but a bit larger than the threshafff) for the  pation breaking the solution’s symmetiyenerated, e.g., due
fundamental soliton. Fok=0.3, the results borrowed from g gn inaccuracy of the numerical schenexpected to be
Sec. V yieldq{f)=57. If extrapolation from thé=0.1 case neutrally stable, leading to a slightly asymmetric established
is approximately correctg?) should be>60 for k=0.3.  solution.
Then, of course, no stable two-solitons can be foundkfor Furthermore, a survey of the asymmetry over the whole
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FIG. 9. (a) Evolution of a slightly perturbed two-soliton over a propagation distance mfaBove the instability threshold ak

1, i.e.,belowthe two-soliton instability threshold.
VII. CONCLUSION

6. (z is in units of 7.) (b) Same aga), except thay

1.2, andq

parameter plane shows that for the stable solitons in the posi-

tive k region, the asymmetry is-1%, decreasing als de-

0.1,D

We have demonstrated the existence of spatial gap soli-

creases. In the region of negatikéwhere the solitons have

a system of three waves, resonantly interacting in a quadrati-
vectors, and the second harmonic, whose wave vector is par-

try. This is another confirmation of the general inferenceten on it. The model includes two components of the funda-
formulated above, according to which the two-solitons aremental harmonic, with different orientations of their wave

which indicates that the soliton have practically no asymmeeally nonlinear planar waveguide with a Bragg grating writ-
essentially more robust at larger negatike

the trend to be more robystthe observed asymmetry is tons, and of their bound states in the form of two-solitons, in

~0.1% atk=—0.1 and atk=—0.5 it drops t0~0.01%,
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FIG. 10. Numerically determined stability domains for the two-solitons on thB) plane atk=0.1.

allel to the grating. Control parameters of the model are theversions of the model has allowed us to identify two possible
phase mismatch between the harmonics and the diffractiotypes of solitons, distinguished by the structure of their tails
coefficient of the second harmonic that does not interact witt{free-tail andtail-lockedsolitong. Then a family of the com-

the grating. The analysis of the linearized aminilinearized plex fundamental-soliton solutions was constructed numeri-
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FIG. 11. Evolution of the asymmetry ratio of the two-soliton over a very long propagation distancerafidiDabove the instability
threshold aD =0.5,k=0.1, andq=10. (z is in units of7.)



PRE 58 THREE-WAVE GAP SOLITONS IN WAVEGUIDES WIH . .. 6721

cally and analytically by means of the variational approxi-pending on the parameters, the fundamental soliton at the
mation, which demonstrates a fairly reasonable agreememint of the exact matching between the fundamental and
with the numerical solutions. This is, as a matter of fact, ansecond harmonic&vhich is, simultaneously, a boundary be-
example(together with the recent workR3]) of successful tween the free-tail and tail-locked solitgnsay be both
application of the variational approximation to the search forstable and unstable, in contrast to the usgal models. The
complexstationary-soliton solutions, in a model where theyexistence oftabletwo-soliton bound states is a remarkable
are not available in an exact form. Soliton existence limitsfeature of the model, which is a drastic difference from the
were found in an exact form. Mechanisms by which the funfamiliar y® systems. Because g waveguide with the
damental solitons disappear as these limits are approachegsonant grating can be easily fabricated, the most important
were explored. Unlike the gap solitons in the four-way\® physical result of this work is that it suggests straightforward
model[7], in the present one the solitons completely fill the ideas for the experimental search for single- and two-humped
domain where they can exithich implies that they should three-wave spatial solitons jgt?) optical materials by means
be easier to observe in the experiment of the Bragg grating.

Two-soliton solutions also exist in a broad parametric The size of the experimental sample necessary for the
range, with the separation between the bound pulses insidsbservation of the solitons is, in any case, no larger than that
them very weakly depending on the parameters, except for @ which the usualy®’ solitons have been observed, i.e., a
vicinity of the existence borders. With the increase of thefew centimeterg24], as the effective FH diffraction gener-
mismatch parameter, the two-solitons display a trend to disated by the grating is stronger than the natural diffraction and
appear via a collapse. hence the corresponding diffraction length, which determines

The stability of the fundamental solitons and two-solitonsthe soliton’s size, is smaller than without the grating, while
was analyzed by means of direct partial differential equationthe SH diffraction length is the same as in the usual model.
simulations. It was found that both types of solitons areAn experimental observation of the solitons in the planar
stable or unstable when the mismatch is above or beneathrenlinear waveguides of presently available sizes, with the
corresponding threshold value, respectively. The thl’esholdgrating written on them, appears to be quite possible.
for the fundamental solitons and two-solitons are different
but close, the latter one being som_ewhat higher. The thres_h- ACKNOWLEDGMENT
olds strongly depend upon the soliton’s wave-number shift
k, but are nearly independent of the second-harmonic dif- One of the authoréB.A.M.) appreciates support from the
fraction coefficient. Atk<0, the thresholds do not exist as School of Electrical Engineering at the University of New
all the fundamental solitons and two-solitons are stable. DeSouth Wales.
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